In financial applications, understanding the asset correlation structure is crucial to tasks such as asset pricing, portfolio optimisation, risk management, and asset allocation. Thus, modelling the volatilities and correlations of multivariate stock market returns is of great importance.
This paper proposes the iterated filtering algorithm for estimating the bivariate stochastic volatility model of Yu and Meyer. The iterated filtering method is a frequentist-based approach that utilises particle filters and can be applied to estimating the parameters of non-linear or non-Gaussian state-space models.
The paper presents an empirical example that demonstrates the way in which the proposed estimation method might be used to estimate the correlation between the returns of two assets: Standard and Poor’s 500 index and the price of gold in US dollars. This is accompanied by a simulation study that proves the validity of the approach.
multivariate stochastic volatility, iterated filtering, particle filters
C32, C58, G15
Andrieu, C., Doucet, A., & Holenstein, R. (2010). Particle Markov chain Monte Carlo methods. Journal of the Royal Statistical Society. Series B: Statistical Methodology, 72(3), 269–342. https://doi.org/10.1111/j.1467-9868.2009.00736.x.
Asai, M., McAleer, M., & Yu, J. (2006). Multivariate Stochastic Volatility: A Review. Econometric Reviews, 25(2–3), 145–175. https://doi.org/10.1080/07474930600713564.
Baur, D. G., & Lucey, B. M. (2009). Flights and contagion – An empirical analysis of stock-bond correlations. Journal of Financial Stability, 5(4), 339–352. https://doi.org/10.1016/j.jfs.2008.08.001.
Baur, D. G., & McDermott, T. K. (2010). Is gold a safe haven? International evidence. Journal of Banking & Finance, 34(8), 1886–1898. https://doi.org/10.1016/j.jbankfin.2009.12.008.
Bejger, S., & Fiszeder, P. (2021). Forecasting currency covariances using machine learning treebased algorithms with low and high prices. Przegląd Statystyczny. Statistical Review, 68(3), 1–15. https://doi.org/10.5604/01.3001.0015.5582.
Będowska-Sójka, B., & Kliber, A. (2021). Is there one safe-haven for various turbulences? The evidence from gold, Bitcoin and Ether. The North American Journal of Economics and Finance, 56. https://doi.org/10.1016/j.najef.2021.101390.
Bhadra, A., Ionides, E. L., Laneri, K., Pascual, M., Bouma, M., & Dhiman, R. C. (2011). Malaria in Northwest India: Data Analysis via Partially Observed Stochastic Differential Equation Models Driven by Lévy Noise. Journal of the American Statistical Association, 106(494), 440–451. https://doi.org/10.1198/jasa.2011.ap10323.
Bollerslev, T., Patton, A. J., & Quaedvlieg, R. (2018). Modeling and forecasting (un)reliable realized covariances for more reliable financial decisions. Journal of Econometrics, 207(1), 71–91. https://doi.org/10.1016/j.jeconom.2018.05.004.
Bretó, C. (2014). On idiosyncratic stochasticity of financial leverage effects. Statistics & Probability Letters, 91, 20–26. https://doi.org/10.1016/j.spl.2014.04.003.
Cappé, O., Moulines, E., & Rydén, T. (2005). Inference in Hidden Markov Models. Springer Science & Business Media. https://doi.org/10.1007/0-387-28982-8.
Chib, S., Omori, Y., & Asai, M. (2009). Multivariate Stochastic Volatility. In T. G. Andersen, R. A. Davis, J.-P. Kreiß & T. Mikosch (Eds.), Handbook of Financial Time Series (pp. 365–400). Springer. https://doi.org/10.1007/978-3-540-71297-8_16.
Chiu, T. Y. M., Leonard, T., & Tsui, K.-W. (1996). The Matrix-Logarithmic Covariance Model. Journal of the American Statistical Association, 91(433), 198–210. https://doi.org/10.1080/01621459.1996.10476677.
Chopin, N., Jacob, P. E., & Papaspiliopoulos, O. (2013). SMC2: an efficient algorithm for sequential analysis of state space models. Journal of the Royal Statistical Society. Series B: Statistical Methodology, 75(3), 397–426. https://doi.org/10.1111/j.1467-9868.2012.01046.x.
Chopin, N., & Papaspiliopoulos, O. (2020). An Introduction to Sequential Monte Carlo. Springer Nature. https://doi.org/10.1007/978-3-030-47845-2.
Du, X., Yu, C. L., & Hayes, D. J. (2011). Speculation and volatility spillover in the crude oil and agricultural commodity markets: A Bayesian analysis. Energy Economics, 33(3), 497–503. https://doi.org/10.1016/j.eneco.2010.12.015.
Engle, R. (2002). Dynamic Conditional Correlation: A Simple Class of Multivariate Generalized Autoregressive Conditional Heteroskedasticity Models. Journal of Business and Economic Statistics, 20(3), 339–350. https://doi.org/10.1198/073500102288618487.
Engle, R. F., & Kroner, K. F. (1995). Multivariate Simultaneous Generalized ARCH. Econometric Theory, 11(1), 122–150. https://doi.org/10.1017/S0266466600009063.
Fiszeder, P., & Orzeszko, W. (2021). Covariance matrix forecasting using support vector regression. Applied Intelligence, 51(10), 7029–7042. https://doi.org/10.1007/s10489-021-02217-5.
Gębka, B., & Karoglou, M. (2013). Have the GIPSI settled down? Breaks and multivariate stochastic volatility models for, and not against, the European financial integration. Journal of Banking and Finance, 37(9), 3639–3653. https://doi.org/10.1016/j.jbankfin.2013.04.035.
Gordon, N. J., Salmond, D .J., & Smith, A. F. M. (1993). Novel approach to nonlinear/non- Gaussian Bayesian state estimation. IEE Proceedings F. Radar and Signal Processing, 140(2), 107–113. https://doi.org/10.1049/ip-f-2.1993.0015.
Gouriéroux, C. (2006). Continuous Time Wishart Process for Stochastic Risk. Econometric Reviews, 25(2–3), 177–217. https://doi.org/10.1080/07474930600713234.
Harvey, A., Ruiz, E., & Shephard, N. (1994). Multivariate Stochastic Variance Models. The Review of Economic Studies, 61(2), 247–264. https://doi.org/10.2307/2297980.
He, D., Ionides, E. L., & King, A. A. (2009). Plug-and-play inference for disease dynamics: measles in large and small populations as a case study. Journal of the Royal Society Interface, 7(43), 271– 283. https://doi.org/10.1098/rsif.2009.0151.
Hui, E. C. M., & Zheng, X. (2012a). Exploring the dynamic relationship between housing and retail property markets: An empirical study of Hong Kong. Journal of Property Research, 29(2), 85– 102. https://doi.org/10.1080/09599916.2012.674968.
Hui, E. C., & Zheng, X. (2012b). The dynamic correlation and volatility of real estate price and rental: An application of MSV model. Applied Economics, 44(23), 2985–2995. https://doi.org/10.1080/00036846.2011.568409.
Ionides, E. L., Bhadra, A., Atchadé, Y., & King, A. (2011). Iterated filtering. The Annals of Statistics, 39(3), 1776–1802. https://doi.org/10.1214/11-AOS886.
Ionides, E. L., Bretó, C., & King, A. A. (2006). Inference for nonlinear dynamical systems. Proceedings of the National Academy of Sciences of the United States of America, 103(49), 18438–18443. https://doi.org/10.1073/pnas.0603181103.
Ionides, E. L., Nguyen, D., Atchadé, Y., Stoev, S., & King, A. A. (2015). Inference for dynamic and latent variable models via iterated, perturbed Bayes maps. Proceedings of the National Academy of Sciences, 112(3), 719–724. https://doi.org/10.1073/pnas.1410597112.
Ishihara, T., & Omori, Y. (2012). Efficient Bayesian estimation of a multivariate stochastic volatility model with cross leverage and heavy-tailed errors. Computational Statistics and Data Analysis, 56(11), 3674–3689. https://doi.org/10.1016/j.csda.2010.07.015.
Ishihara, T., Omori, Y., & Asai, M. (2016). Matrix exponential stochastic volatility with cross leverage. Computational Statistics and Data Analysis, 100, 331–350. https://doi.org/10.1016/j.csda.2014.10.012.
Jin, X., & Maheu, J. M. (2013). Modeling Realized Covariances and Returns. Journal of Financial Econometrics, 11(2), 335–369. https://doi.org/10.1093/jjfinec/nbs022.
Johansson, A. C. (2010a). Asian sovereign debt and country risk. Pacific-Basin Finance Journal, 18(4), 335–350. https://doi.org/10.1016/j.pacfin.2010.02.002.
Johansson, A. C. (2010b). Stock and Bond Relationships in Asia (CERC Working Paper Series No. 14). https://ideas.repec.org//p/hhs/hacerc/2010-014.html.
Jungbacker, B., & Koopman, S. J. (2006). Monte Carlo Likelihood Estimation for Three Multivariate Stochastic Volatility Models. Econometric Reviews, 25(2–3), 385–408. https://doi.org/10.1080/07474930600712848.
Kastner, G., Frühwirth-Schnatter, S., & Lopes, H. F. (2017). Efficient Bayesian Inference for Multivariate Factor Stochastic Volatility Models. Journal of Computational and Graphical Statistics, 26(4), 905–917. https://doi.org/10.1080/10618600.2017.1322091.
King, A. A., Ionides, E. L., Pascual, M., & Bouma, M. J. (2008). Inapparent infections and cholera dynamics. Nature, 454(7206), 877–880. https://doi.org/10.1038/nature07084.
King, A. A., Nguyen, D., & Ionides, E. L. (2016). Statistical Inference for Partially Observed Markov Processes via the R Package pomp. Journal of Statistical Software, 69(12), 1–43. https://doi.org/10.18637/jss.v069.i12.
Kliber, A. (2011). Sovereign CDS Instruments in Central Europe – Linkages and Interdependence. Dynamic Econometric Models, 11, 111–128. https://doi.org/10.12775/DEM.2011.008.
Kliber, A., Marszałek, P., Musiałkowska, I., & Świerczyńska, K. (2019). Bitcoin: Safe haven, hedge or diversifier? Perception of bitcoin in the context of a country’s economic situation – A stochastic volatility approach. Physica A: Statistical Mechanics and its Applications, 524, 246–257. https://doi.org/10.1016/j.physa.2019.04.145.
Lele, S. R., Dennis, B., & Lutscher, F. (2007). Data cloning: easy maximum likelihood estimation for complex ecological models using Bayesian Markov chain Monte Carlo methods. Ecology Letters, 10(7), 551–563. https://doi.org/10.1111/j.1461-0248.2007.01047.x.
Lunn, D., Spiegelhalter, D., Thomas, A., & Best, N. (2009). The BUGS project: Evolution, critique and future directions. Statistics in Medicine, 28(25), 3049–3067. https://doi.org/10.1002/sim.3680.
Malik, S., & Pitt, M. K. (2011). Particle filters for continuous likelihood evaluation and maximisation. Journal of Econometrics, 165(2), 190–209. https://doi.org/10.1016/j.jeconom.2011.07.006.
Nguyen, D. (2016). Another look at Bayes map iterated filtering. Statistics and Probability Letters, 118, 32–36. https://doi.org/10.1016/j.spl.2016.05.013.
R Development Core Team. (2010). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing. http://www.r-project.org.
Shephard, N., & Pitt, M. K. (1997). Likelihood analysis of non-Gaussian measurement time series. Biometrika, 84(3), 653–667. https://doi.org/10.1093/biomet/84.3.653.
So, M. K. P., Li, W. K., & Lam, K. (1997). Multivariate modelling of the autoregressive random variance process. Journal of Time Series Analysis, 18(4), 429–446. https://doi.org/10.1111/1467-9892.00060.
Stocks, T., Britton, T., & Höhle, M. (2020). Model selection and parameter estimation for dynamic epidemic models via iterated filtering: application to rotavirus in Germany. Biostatistics, 21(3),400–416. https://doi.org/10.1093/biostatistics/kxy057.
Sturtz, S., Ligges, U., & Gelman, A. (2005). R2WinBUGS: A Package for Running WinBUGS from R. Journal of Statistical Software, 12(3), 1–16. https://doi.org/10.18637/jss.v012.i03.
Szczepocki, P. (2020). Application of iterated filtering to stochastic volatility models based on non- Gaussian Ornstein-Uhlenbeck process. Statistics in Transition new series, 21(2), 173–187. https://doi.org/10.21307/stattrans-2020-019.
Toni, T., Welch, D., Strelkowa, N., Ipsen, A., & Stumpf, M. P. H. (2009). Approximate Bayesian computation scheme for parameter inference and model selection in dynamical systems. Journal of the Royal Society Interface, 6(31), 187–202. https://doi.org/10.1098/rsif.2008.0172.
Tsay, R. S. (2005). Analysis of Financial Time Series. John Wiley & Sons.
Watanabe, T., & Omori, Y. (2004). A multi-move sampler for estimating non-Gaussian time series models: Comments on Shephard & Pitt (1997). Biometrika, 91(1), 246–248. https://doi.org/10.1093/biomet/91.1.246.
Xu, Y., & Jasra, A. (2019). Particle filters for inference of high-dimensional multivariate stochastic volatility models with cross-leverage effects. Foundations of Data Science, 1(1), 61–85. https://doi.org/10.3934/fods.2019003.
You, C., Deng, Y., Hu, W., Sun, J., Lin, Q., Zhou, F., Pang, C. H., Zhang, Y., Chen, Z., & Zhou, X.-H. (2020). Estimation of the time-varying reproduction number of COVID-19 outbreak in China. International Journal of Hygiene and Environmental Health, 228, 1–7. https://doi.org/10.1016/j.ijheh.2020.113555.
Yu, J., & Meyer, R. (2006). Multivariate Stochastic Volatility Models: Bayesian Estimation and Model Comparison. Econometric Reviews, 25(2–3), 361–384. https://doi.org/10.1080/07474930600713465.